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Abstract
A theoretical model is suggested which describes a new type of topological
defect in condensed matter, namely the hyperdislocations in networks of misfit
dislocations at film/substrate interfaces. Formulae for elastic characteristics of
misfit dislocation (MD) networks with hyperdislocations, such as elastic moduli
and the hyperdislocationenergy, are found. With these formulae, the anisotropy
of the MD networks and the dependence of the hyperdislocation energy on the
film thickness are analysed.

1. Introduction

Solid films exhibiting functional physical properties are the subject of intensive studies
motivated by their diverse technological applications and the interest to in the fundamentals of
the physical phenomena occurring in these films. Both the structure and the physical properties
of the films are strongly influenced by the generation and evolution of misfit dislocations
(MDs) and their configurations in film/substrate composite solids; see, e.g., [1–16]. In most
cases MDs form a network at the interphase (film/substrate) boundary, whose geometry is
sensitive to the crystallographic and material parameters of the adjacent film and substrate,
and, in its turn, affects the physical phenomena in the solid films. For instance, a MD network
at the film/substrate boundary serves as a stress source causing the formation of lattices of
semiconductor quantum dots on the film free surface [13–15]. MD networks are commonly
assumed to be regular, simplifying analysis of their behaviour. However, MD networks in real
continuous and island films are strained and irregular; see a discussion in paper [15]. This
arouses interest in examinations of strained and irregular MD networks. The main aim of this
paper is to elaborate a theoretical model which describes elastic characteristics of strained MD
networks containing hyperdislocations, topological defects of dislocation type, violating the
translational order of periodic MD networks in the same way as conventional lattice dislocations
violate the translational order of crystal lattices.
1 http://www.ipme.ru/ipme/labs/ltdm/ovidko.html.

0953-8984/03/122127+09$30.00 © 2003 IOP Publishing Ltd Printed in the UK 2127

http://stacks.iop.org/JPhysCM/15/2127


2128 I A Ovid’ko and A G Sheinerman

Figure 1. MD networks at a film/substrate boundary. (a) A defect-free network. (b) A network
containing hyperdislocation.

2. Elastic moduli of a 2D network of misfit dislocations

Let us consider a model heteroepitaxial system consisting of a film of thickness h and a
semi-infinite substrate. The film and the substrate are assumed to be isotropic solids having
the same values of the shear modulus G and the same values of the Poisson ratio ν. The
geometric mismatch at the film/substrate boundary is characterized by the misfit parameter
f = 2(as − ai)/(as + a f ), where a f and as are the crystal lattice parameters of the film
and the substrate, respectively. Uniform elastic strains ε

f
yy = ε

f
zz = f and misfit stresses

σ
f

yy = σ
f

zz = [2G(1 + ν)/(1 − ν)] f , whose components are written in the coordinate system
shown in figure 1, occur in the film due to the geometric mismatch at the interphase boundary.

A square network of MDs is formed at the film/substrate boundary, which consists of two
orthogonal rows of MDs of the edge type (figure 1(a)). MDs induce stress fields that, in part,
compensate for misfit stresses. The interspacing between neighbouring parallel dislocations is
p; it corresponds to the minimum energy of the system. Burgers vectors of MDs are parallel
with the film/substrate boundary and have the same magnitude b.

Let us examine the elastic properties of a regular square network of MDs. In the coordinate
system shown in figure 1, the nodes of the ideal (non-strained) MD network have coordinates
(yk, zl), where yk = kp, zl = lp, with k and l being integers. In order to describe the effective
elastic strains of the MD network, we will model it as a two-dimensional elastic medium
by analogy with the case of strained lattices of quantum dots [17]. In doing so, a strained
MD network results from the non-deformed MD network by displacing MD lines in the 0yz
planes which keeps the MD lines continuous. The displacements of MDs from network nodes
are described by a two-dimensional vector displacement field ui (x, y). The corresponding
effective strains of the MD network are characterized by the strain tensor

εi j = (1/2)(ui, j + u j,i), i, j = y, z. (1)
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The corresponding tensor of effective stresses in a 2D network is defined as follows:

σi j = ∂wsur f

∂εi j
, (2)

where i, j = y, z, and wsur f is the energy density (per unit area) of the heteroepitaxial system.
In general, the stresses σi j are in a non-linear relationship with the strains εmn . For

definiteness and simplicity, hereinafter we restrict our consideration to the situation with low
strains (εmn � 1). In doing so, the linear dependence of the stress tensor σ on the strain tensor
ε is realized with a good accuracy. It can be found as the first-order term of the expansion of
the tensor σ in power terms in ε. In the case of a square network of MDs discussed, three
elastic constants, c11, c12, and c44, figure in the linear relationship between the components of
the tensors σi j and εi j :

σyy = c11εyy + c12εzz + o(ε) (3)

σzz = c11εzz + c12εyy + o(ε), (4)

σyz = 2c44εyz + o(ε). (5)

In order to calculate the elastic moduli c11, c12, and c44, we consider the MD network in the
uniformly strained state characterized by strain: ε = εyyeyey + εzzezez + εyz(eyez + ezey)

(figure 2). The mean energy density (per unit area) wsur f of the system under consideration
can be written as follows:

wsur f =
(

1

p1
+

1

p2

)
(W d + W d− f + W c) +

∑∞
i=1 W 1−1(ip1)

p1

+

∑∞
i=1 W 1−1(ip2)

p2
+

E1−2

p1 p2
+ w

sur f
f . (6)

Here p1 = p(1 + εyy), p2 = p(1 + εzz), W d denotes the proper linear energy density (energy
per unit length of MD) of the MD, W d− f the linear energy density that characterizes the
interaction between the MD and the misfit stresses, W c the dislocation core energy density,
W 1−1(r) the linear energy density that characterizes the interaction between two parallel MDs
distant by r from each other, E1−2 the energy that characterizes the interaction between two
MDs belonging to different orthogonal dislocation rows of the MD network, wsur f

f the energy
density (per unit area) of misfit stresses.

The proper linear energy density W d of MD is given as (for details, see [18] and the
appendix)

W d = Db2

2

[
ln

2h

b
− 1

2

]
, (7)

where D = G/[2π(1 − ν)]. The energy W d− f that characterizes the interaction between the
MD and the misfit stresses is as follows (for details, see [19] and the appendix):

W d− f = −4π Db(1 + ν) f h. (8)

It is worth noting that the values of the energy density W d (W d− f ) given by formula (7)
(formula (8)) are the same for all MDs located at the interphase boundary. Both W d and W d− f

are independent of the spatial arrangement of the MDs at the interphase boundary.
The dislocation core energy density W c is approximately equal to Db2/2 [20]. The energy

density W 1−1(r) of the interaction between the parallel MDs may be calculated in the same
way as the energy density W d− f . It is given by the formula [21]

W 1−1(r) = Db2

2

[
ln

4h2 + r2

r2
+

4h2(4h2 + 3r2)

(4h2 + r2)2

]
. (9)
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Figure 2. MD networks in (a) non-strained and (b) uniformly strained states.

In order to calculate the energy E1−2 of the interaction between MDs belonging to different
dislocation rows, for definiteness, we consider two MDs, 1 and 2 (figure 2(b)), whose lines
intersect at a point with coordinates y = z = 0. Let the dislocations 1 and 2 have Burgers
vectors b1 = bey and b2 = ben, respectively, with the unit vector n being normal to the line
of MD 2. In these circumstances, the energy E1−2 that characterizes the interaction between
MDs 1 and 2 can be calculated using the following formula [22]:

E1−2 = −b
∫ h

0
dx

∫ ∞

−∞
dl σ d

nn . (10)

Here l is the coordinate along the line of MD 2 (l = y/ cos α), σ d
nn(x, y) is the component of

the stress tensor of MD 1, and α = 2εyz denotes the angle between axes l and y.
The stress σ d

nn can be written in terms of the components σ d
yy, σ d

zz , and σ d
yz of the stress

tensor of MD 1 as follows:

σ d
nn = σ d

zz cos2 α + σ d
yy sin2 α − σ d

yz sin 2α. (11)

Here σ d
yz = 0, and the stress tensor components σ d

zz and σ d
yy of a MD in a half-space are obtained

from the stress field [22] of a dislocation in a two-phase medium by putting the elastic moduli
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of one of the phases equal to zero. The stresses σ d
zz and σ d

yy are given by the following formulae:

σ d
zz(x, y) = 2νDb

{
x1

r2
1

− x2

r2
2

+ 2h

(
− 1

r2
2

+ 2
x2

2

r4
2

)}
, (12)

σ d
yy(x, y) = Db

{
3

x1

r2
1

− 2
x3

1

r4
1

− 3
x2

r2
2

+ 2
x3

2

r4
2

+ 2h

[
− 1

r2
2

+ 8
x2

2

r4
2

− 8
x4

2

r6
2

− 2h

(
3

x2

r4
2

− 4
x3

2

r6
2

)]}
,

(13)

where x1,2 = x ∓ h, r2
1,2 = x2

1,2 + y2. With (11)–(13) substituted into formula (10) and the
relationship dl = dy/ cos α taken into account, we have

E1−2 = 4π Db2h

(
ν cos α +

sin2 α

cos α

)
. (14)

For small deformations (εyy � 1, εzz � 1, α = 2εyz � 1), formula (14) can be rewritten in
the following form:

E1−2

p1 p2
= 4π Db2h

(
ν

p1 p2
+

2(2 − ν)

p2
ε2

yz

)
. (15)

With (7)–(9) and (15) substituted into formula (6), we get

wsur f = Db2

2

{
g(2πh/p1) + g(2πh/p2) +

8πνh

p1 p2
+

16π(2 − ν)h

p2
ε2

yz

}
+ w

sur f
f , (16)

where

g(u) = u

2πh

(
ln

2h

b
− 8π(1 + ν) f

h

b
+ ln

sinh u

u
+ u coth u − u2

2 sinh2 u

)
. (17)

Substitution of (16) and (17) into the condition ∂wsur f /∂εyy|ε=0 = 0 (or its equivalent
∂wsur f /∂εzz|ε=0 = 0) results in the following relationship:

8π(1 + ν) f
h

b
− ln

2h

b
= ln

sinh t

t
+ 3t coth t − 5t2

2 sinh2 t
− 1 − t3 coth t

sinh3 t
+ 4νt, (18)

where t = 2πh/p. From (2)–(5) and (16)–(18) we find the elastic constants:

c11 = ∂2wsur f

∂ε2
yy

∣∣∣∣
ε=0

= ∂2wsur f

∂ε2
zz

∣∣∣∣
ε=0

= 4π Db2h

p2
β, (19)

c12 = ∂2wsur f

∂εyyεzz

∣∣∣∣
ε=0

= 4πνDb2h

p2
, (20)

c44 = 1

2

∂2wsur f

∂ε2
yz

∣∣∣∣
ε=0

= 2(2 − ν)

ν
c12, (21)

where

β = − sinh4 t + 2t sinh 2t sinh2 t − 8t2 sinh2 t + 4t3 sinh 2t − t4(1 + 2 cosh2 t)

4t sinh4 t
. (22)

The dependence of the parameter β on the parameter t = 2πh/p is shown in figure 3. As
follows from figure 3, β increases from 0 to 1 with t rising from 0 to ∞. As t → 0 (p → ∞),
we have β → 0, in which case c11/c12 → 0, and c11/c44 → 0. That is, the MD network is
extremely anisotropic. For instance, the strain εyy along the y-axis produces only the stress
σzz perpendicular to the y-axis and does not induce any stress (σyy) along this axis.

c11 → 0 at p → ∞, because the linear energy density W 1−1 that characterizes the
interaction between parallel MDs, given by formula (9), approaches 0 in the limit of p → ∞.
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Figure 3. The dependence of the parameter β on 2πh/p.

At the same time, the linear energy E1−2 that characterizes the interaction between MDs
belonging to different dislocation rows, given by formula (14), does not depend on p. As a
corollary, MDs belonging to different dislocation rows interact elastically, even if p → ∞.
Due to this interaction, the elastic moduli c12 and c44 have non-zero values at p → ∞.

The situation with a low-density network of MDs is realized at h > hc and h ≈ hc with hc

being the critical film thickness for generation of one MD in the film. In the situation with large
t (t > 1) and the corresponding intermediate values of p/h (p/h < 2π), we have β ≈ 1.
The situation with a high-density network of MDs is realized when h exceeds hc by more than
a factor ranging from 1.5 to 2, depending on the misfit parameter f . At β ≈ 1, the anisotropy
of the MD network is not significant compared to that of the low-density MD network.

3. The energy of a hyperdislocation (cellular dislocation) in a misfit dislocation network

Let us calculate the energy of a hyperdislocation in the MD network, using formulae for
the elastic constants c11, c12, and c44 (see the previous section). We assume that the
hyperdislocation is formed due to 90◦ bending of one of the MD lines, in which case the
curved MD line enters the film free surface (figure 1(b)). In doing so, for definiteness, we
will consider a high-density MD network (p/h < 2π) characterized by β ≈ 1. In order to
estimate in the first approximation the energy of the hyperdislocation, we will examine it in
the elastically isotropic medium (MD network) characterized by the mean 2D shear modulus
Gd and the Poisson ratio νd . Formulae (3)–(5) and the following 2D analogue of Hooke’s law:

σi j = 2Gd

1 − νd
[(1 − νd)εi j + νdεkkδi j ] (23)

(where i, j = y, z; εkk = εyy + εzz , and δi j is the Kronecker symbol) result in the following
expressions: νd = c12/c11 ≈ ν, Gd = γ c44, with γ being the factor taking into account
anisotropy (γ ∼ 1). It is worth noting that the elastic constants Gd , νd , c11, c12, and c44 are
those of a two-dimensional medium; hence their units are different from the units of three-
dimensional elastic constants.

Equation (23) formally coincides with Hooke’s law for the 3D medium in the plane stress
state. Therefore, the elastic energy Eel

sd of the hyperdislocation in a 2D network of MDs is
given by a formula similar to expression [20] for the elastic energy of a conventionaldislocation
(per its unit length) in a 3D infinite medium, where νd is replaced by νd/(1 + νd) (for details,
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see [23]):

Eel
sd = D′ p2

2
ln

R

p
. (24)

Here D′ = Gd(1+νd)/(2π), and R is the screening length for the hyperdislocation stress field.
As follows from formulae (20), (21), and (24), the elastic energy Eel

sd of a hyperdislocation in
a MD network runs parallel with the film thickness h.

The total energy of the hyperdislocation consists of three terms:

Esd = Eel
sd + Ec

sd + Esegm . (25)

Here Ec
sd denotes the hyperdislocation core energy, and Esegm the energy that characterizes

the formation of the MD segment perpendicular to the film free surface (figure 1(b)).
The hyperdislocation core energy in the standard approximation [20] is Ec

sd ≈ D′ p2/2.
The energy Esegm of the MD segment (figure 1(b)) is derived from the energy [24] of a prismatic
dislocation loop perpendicular to a free surface as [24]

Esegm = Db2h

2

[
ln

2h

b
+

[1 − 2ν(6 − 11ν + 8ν3)] ln 2

(1 − 2ν)2
− 1

4

]
. (26)

It should be noted that the energy Esegm at low values of h/b essentially depends on the Poisson
ratio, and can be either positive or negative. With (20), (21), (24), and (26) substituted into
formula (25), we find the total energy of the hyperdislocation:

Esd = Db2h

2

{
4γ (1 + ν)(2 − ν)

(
ln

R

p
+ 1

)
+ ln

2h

b
+

[1 − 2ν(6 − 11ν + 8ν3)] ln 2

(1 − 2ν)2
− 1

4

}
.

(27)

Notice that a hyperdislocation in a two-dimensional MD network represents a point defect,
unlike conventional dislocations in bulk crystals. Therefore, the hyperdislocation energy is
given by formula (27) which has a typical form for energies of point defects in condensed
media, in contrast to the case for conventional dislocations, which are characterized by linear
energy densities.

As follows from formula (27), the energy Esd grows more rapidly with rising h compared
to the energy density W d of MDs located at the film/substrate boundary (W d ∝ ln(h/b)). As
a corollary, the formation of hyperdislocations can occur only in thin films.

4. Concluding remarks

Thus, in this paper, we have theoretically examined topological defects of the new type,
hyperdislocations in MD networks (figure 1(b)). We have found formulae for elastic
characteristics of MD networks with hyperdislocations, such as elastic moduli and the
hyperdislocation energy. According to our theoretical analysis, MD networks exhibit
essential anisotropy whose degree increases with rising density of MDs. The energy of a
hyperdislocation in a MD network formed in film of thickness h grows rapidly with rising h;
as a result, the formation of hyperdislocations is possible only in thin films. Hyperdislocations
cause irregularities in spatial arrangement of MDs, which induce a stress distribution in
film/substrate composites, which, in turn, strongly affects the functional properties of solid
films. In this context, of special importance will be experimental identification of the structural
and behavioural features of MD networks containing hyperdislocations (figure 1(b)). These
features should be definitely taken into consideration in further experimental and theoretical
study of solid films, because of their fundamental significance and potential use in technological
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applications. The results of the theoretical analysis of this paper can used be also in studies
of ordered ensembles of semiconductor quantum dots as well as vortices in superconductors,
superfluids, ferromagnetic materials, etc.
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Appendix

The proper energy density (per unit length of MD) W d of a MD is calculated as the work spent
in generation of the MD (or, in other words, the transfer of the MD from the film free surface
x = 0 to its position at the interphase boundary) in its stress field. For instance, the proper
linear energy density W d of the MD with dislocation line (x = h, y = 0) is calculated using
formula [22] as follows:

W d = −b

2

∫ h−rc

0
σ d

yy(x, y = 0) dx . (A.1)

Here rc is the dislocation core radius, and σ d
yy is the yy-component of the MD stress field

tensor, given by formula (13). With (13) substituted into formula (A.1), for h 
 b and rc = b,
we have the known [18] formula (7) (see the text) for the proper linear energy density W d of
the MD.

The energy density (per unit length of MD) W d− f that characterizes the interaction
between the MD and the misfit stresses is calculated as the work spent in generation of the
MD (or, in other words, the transfer of the MD from the film free surface x = 0 to its position
at the interphase boundary) in the misfit stress field σ

f
i j :

W d− f = −b
∫ h

0
σ f

yy(x, y = 0) dx . (A.2)

Substitution of the expression σ
f

yy = [2G(1 + ν)/(1 − ν)] f into formula (A.2) yields the
known [19] formula (8) (see the text) for the interaction energy W d− f .
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